skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lissenberg, C. Johan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Much of Earth’s magma is stored as extensive crystal mush systems, yet the prevalence of physical processes operating within mushes and their importance in volcanically active regions remain enigmatic. In this Review, we explore the physical properties and key processes of crystal mush systems. The initiation, evolution and decline of volcanic systems, modulated by heat supply and loss, could generate differences in the prevalence of mush processes through space and time. Additionally, regional tectonics alter mush properties, with mushes in cool wet settings having persistent residual melt, permitting more effective melt segregation than in hot dry settings. Disaggregation of mushes results in crystal mush material being mobilized or entrained into lavas and erupted, presenting opportunities to define the timescales and chemistry of some mush processes in volcanically active regions. Mush systems can be observed on length scales ranging from kilometres (using geological mapping) to micrometres (using crystal textures). Therefore, it is difficult to integrate data and interpretations across different fields. Improved integration of thermodynamics, textural analysis, geochemistry, modelling and experiments, alongside inputs from adjacent fields such as porous media dynamics, engineering and metallurgy will help to advance understanding of mush systems and ultimately improve hazard evaluation at active and dormant volcanic systems. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Abstract The emergence of the “mush paradigm” has raised several questions for conventional models of magma storage and extraction: how are melts extracted to form eruptible liquid-rich domains? What mechanism controls melt transport in mush-rich systems? Recently, reactive flow has been proposed as a major contributing factor in the formation of high porosity, melt-rich regions. Yet, owing to the absence of accurate geochemical simulations, the influence of reactive flow on the porosity of natural mush systems remains under-constrained. Here, we use a thermodynamically constrained model of melt-mush reaction to simulate the chemical, mineralogical, and physical consequences of reactive flow in a multi-component mush system. Our results demonstrate that reactive flow within troctolitic to gabbroic mushes can drive large changes in mush porosity. For example, primitive magma recharge causes an increase in the system porosity and could trigger melt channelization or mush destabilization, aiding rapid melt transfer through low-porosity mush reservoirs. 
    more » « less
  3. The Earth’s mantle is heterogeneous as a result of early planetary differentiation and subsequent crustal recycling during plate tectonics. Radiogenic isotope signatures of mid-ocean ridge basalts have been used for decades to map mantle composition, defining the depleted mantle endmember. These lavas, however, homogenize via magma mixing and may not capture the full chemical variability of their mantle source. Here, we show that the depleted mantle is significantly more heterogeneous than previously inferred from the compositions of lavas at the surface, extending to highly enriched compositions. We perform high-spatial-resolution isotopic analyses on clinopyroxene and plagioclase from lower crustal gabbros drilled on a depleted ridge segment of the northern Mid-Atlantic Ridge. These primitive cumulate minerals record nearly the full heterogeneity observed along the northern Mid-Atlantic Ridge, including hotspots. Our results demonstrate that substantial mantle heterogeneity is concealed in the lower oceanic crust and that melts derived from distinct mantle components can be delivered to the lower crust on a centimetre scale. These findings provide a starting point for re-evaluation of models of plate recycling, mantle convection and melt transport in the mantle and the crust. 
    more » « less